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Abstract
This paper presents a focused examination of environmental noise, an issue of relevance due to its
implications for human health and well-being, compliant with ISO 1996-2:2017 standards. Moving
beyond the traditional methodologies that primarily rely on level exceedance, our study integrates
advanced machine learning techniques to address the challenges in noise source identification.
With the advent of IoT Noise Monitoring Terminals, the conventional manual auditory analysis
methods have become less feasible. Our research explores the application of convolutional neural
networks (CNNs), a standard in environmental noise analysis, and assesses the emerging utility
of Transformer Neural Network (TNN) models in this domain. The aim is to conduct an objective
comparison of these models, applying them to identical datasets to determine their effectiveness
in identifying noise sources. Through this analysis, the study seeks to contribute to the field of
environmental acoustics by offering insights into the comparative strengths and limitations of CNN
and TNN models.
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1. INTRODUCTION

In the contemporary landscape of technological advancement, the quality of human life is
intricately linked with our ability to understand and manage environmental factors. Among
these, noise pollution stands out as a critical concern, given its significant implications on health
and well-being. The importance of environmental noise monitoring cannot be overstated,
as recognized by ISO 1996-2:2017 standards, which underscore the necessity for accurate
noise source identification and management. This paper presents a focused examination of
the challenges associated with environmental noise, particularly in urban settings where the
amalgamation of various sound sources complicates the task of noise classification. Traditional
methodologies, while effective in capturing level exceedance, fall short in addressing the nuanced
requirements of noise source identification. In this context, the advent of Internet of Things (IoT)
Noise Monitoring Terminals marks a pivotal shift from conventional manual auditory analysis
methods to more sophisticated, data-driven approaches. Given the current state-of-the-art
(SOTA) Transformer models’ success across various fields, including text-based applications
like ChatGPT, exploring these models for audio classification represents a promising research
direction. This paper aims to compare the Transformer model, specifically the AST model [1], for
its potential in handling the complexities of urban sound classification, against the previously
favored Convolutional Neural Network (CNN) architecture. By doing so, it seeks to align with
the emerging trends in environmental noise analysis, leveraging advanced machine learning
techniques to overcome the limitations of traditional methods.

2. BACKGROUND

The advancement of machine learning techniques has significantly impacted the field of audio
classification, particularly in the context of environmental noise monitoring. The selection
of appropriate models for the classification of urban sounds is pivotal, guiding the transition
from traditional methodologies to innovative, data-driven approaches. This section explores
the evolution of model selection for audio classification, from the dominance of Convolutional
Neural Networks (CNNs) to the emerging interest in Transformer-based models.

2.1. Previous Model Selection (CNN) for Audio Classification

Convolutional Neural Networks (CNNs) have long been the preferred choice for audio
classification tasks. The theoretical foundation of CNNs lies in their ability to automatically
and adaptively learn spatial hierarchies of features from input data. CNNs excel in handling
data with a grid-like topology, such as images, which extend to audio data when represented
as spectrograms or mel-frequency cepstral coefficients (MFCCs). The use of convolution layers
allows CNNs to capture local dependencies and scale invariance in the data, making them
particularly suitable for extracting features from complex audio signals. This capability, coupled
with their efficiency and generalization power, has made CNNs a go-to model for a variety of
audio classification tasks, including environmental noise classification.

2.2. Transformer-Based Models in Audio Classification

The introduction of Transformer models [2] marked a paradigm shift in the handling of sequential
data, initially revolutionizing the field of natural language processing (NLP). Unlike their
predecessors, Transformers do not require sequential data to be processed in order. This is
achieved through the mechanism of self-attention, which weights the significance of different
parts of the input data independently of their sequential order. This novel approach presents
a promising avenue for audio classification, where the complex structure of audio signals can
benefit from the Transformer’s ability to capture long-range dependencies without the constraints
of sequential processing.
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Recent works exploring the application of Transformer models in audio classification
have demonstrated their potential. For instance, the AST (Audio Spectrogram Transformer) [1]
model has shown promise in capturing the rich, hierarchical structures within audio data,
offering a new perspective on urban sound classification. Although research on Transformers in
audio classification is still emerging, preliminary findings suggest their capability to outperform
traditional models in certain contexts.

3. LITERATURE REVIEW

Combining the insights from both CNN and Transformer model research in audio classification
provides a comprehensive overview of the current landscape. While CNNs have established a
strong foothold due to their proven efficacy and robustness in handling audio data, Transformers
are gaining traction for their innovative approach to sequential data analysis. The literature reveals
a growing interest in leveraging the strengths of both model types to address the complexities
of audio classification tasks. Studies comparing the performance of CNNs and Transformers on
audio datasets, such as Audio Set [3], FreesoundDataset - FSD50K [4], UrbanSound8K [5], offer
valuable insights into the advantages and limitations of each model type. By synthesizing these
findings, this review aims to foster a nuanced understanding of how contemporary machine
learning models can be harnessed to advance the field of environmental noise classification,
aligning with the evolving standards and expectations of noise monitoring and management.
This exploration underscores the importance of continuous innovation in model selection
and development, highlighting the dynamic interplay between established methodologies and
cutting-edge research in shaping the future of audio classification.

3.1. Convolutional Neural Network

– Piczak, K. J. (2015) [6] introduced the early use of CNNs for environmental sound
classification through spectrogram analysis, setting a foundational approach for audio
recognition tasks.

– Hershey et al. (2017) [7] developed the VGGish model, adapting VGG image recognition
architectures to audio, pioneering the application of image recognition techniques to audio
classification.

– Takahashi, Gygli, & Pfister (2016) [8] highlighted the efficacy of deep CNNs combined with
data augmentation for acoustic event recognition, emphasizing the model’s adaptability to
augmented audio data.

– Salamon & Bello (2017) [9] applied deep CNNs to the UrbanSound8K dataset, demonstrating
significant improvements in urban sound classification and the critical role of data
augmentation.

– The thesis of Metod Zupančič (2021) [10] provides a detailed account of leveraging MFCC
and MEL features in conjunction with convolutional neural networks for environmental
sound classification. Notably, it offers a set of model checkpoints that facilitated the direct
comparison and evaluation of CNNs against Transformer models in this study. While
focusing on the improvement of noise detection solutions, the thesis highlights the utility
of specific audio features and augmentation techniques in achieving high classification
accuracy. This resource proved instrumental in establishing a baseline for performance
comparison within our research.
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3.2. Transformer Neural Network

The evolution of machine learning models, particularly in the context of audio classification,
has been marked by significant advancements from Convolutional Neural Networks (CNNs) to
Transformer models. While CNNs have been the cornerstone in the analysis of audio data, offering
robustness and efficacy, the landscape began to shift with the seminal work "Attention is All You
Need" by Vaswani et al. [2]. This paper introduced the Transformer model, which revolutionized
the way sequential data is processed, emphasizing the use of attention mechanisms over
traditional sequence-based processing methods like RNNs and CNNs. The Transformer model’s
ability to handle sequences in parallel, without the need for recurrent connections, paved the way
for its adaptation beyond natural language processing (NLP) into other domains, including audio
classification.

The subsequent publication "An Image is Worth 16x16 Words" by Dosovitskiy et al. [11]
extended the application of Transformers to the visual domain, proposing the Vision Transformer
(ViT) model. By treating image patches as tokens similar to words in NLP, this work demonstrated
that Transformers could achieve state-of-the-art results on image classification tasks, challenging
the dominance of CNNs in computer vision. This innovative approach underscored the model’s
versatility and its potential for cross-domain applicability, setting the stage for further explorations
into how Transformers could be leveraged for audio and environmental noise classification.

Building on these foundational works, the Audio Spectrogram Transformer (AST) [1] model
paper further adapted the Transformer architecture to the task of audio classification. By applying
the principles of ViT to spectrogram images of sound, the AST model offered a novel method for
capturing the complex patterns within audio data. This adaptation highlighted the Transformer’s
capability to understand and classify diverse sound environments, including the challenging
nuances of urban soundscapes as represented in the UrbanSound8K dataset.

In synthesizing the insights from these pivotal studies, it becomes evident that the journey
from "Attention is All You Need" [2] through "An Image is Worth 16x16 Words" [11] to the
AST model [1] marks a significant evolution in our approach to audio classification. This
literature review underscores the transformative impact of Transformer models in the field,
showcasing their potential to redefine the boundaries of environmental noise classification. The
exploration of Transformers in audio classification not only aligns with the evolving standards
and expectations of noise monitoring and management but also highlights the importance of
continuous innovation in model selection and development. The dynamic interplay between
established methodologies and cutting-edge research is shaping the future of audio classification,
promising new avenues for understanding and managing the complex world of urban sounds.
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4. METHODOLOGY

4.1. Dataset Description (UrbanSound8K)

The UrbanSound8K dataset is a compilation of 8,732 labeled sound clips of urban noises, each
lasting up to 4 seconds. These clips are drawn from field recordings and are classified into 10
categories that are common in urban environments: air conditioners, car horns, children playing,
dogs barking, drilling, idling engines, gunshots, jackhammers, sirens, and street music. This
categorization is designed to encapsulate a wide range of urban soundscapes, making the dataset
a comprehensive resource for training and evaluating models for urban sound classification.
The diversity and real-world complexity of the sounds in UrbanSound8K render it particularly
suitable for this study, offering a robust framework for assessing the efficacy of different audio
classification models.

4.2. Audio Features

Mel-Frequency Cepstral Coefficients (MFCCs) are a cornerstone in audio signal processing
for sound classification and speech recognition. The derivation of MFCCs mimics the human
auditory system, beginning with the division of the sound signal into short frames and converting
these through a Fourier transform to analyze frequency components. Critical to this process is
the application of the Mel scale through a series of filters, reflecting the human ear’s logarithmic
sensitivity to pitch. The culmination of this process involves the Discrete Cosine Transform (DCT)
on the log Mel spectra, resulting in MFCCs that encapsulate the auditory-relevant characteristics
of sound.

Mel Spectrograms provide a complementary analysis, visually representing the sound’s
frequency content over time on the Mel scale. This visual adjustment is essential for aligning
frequency representation with human auditory perception, especially for distinguishing between
diverse sound types in urban environments. The generation involves dividing the sound signal
into frames and mapping the frequency spectrum onto the Mel scale, creating a spectrogram that
intuitively displays sound energy and amplitude.

In urban sound classification, the nuanced capabilities of MFCCs and Mel spectrograms
are invaluable. MFCCs excel in distilling sound patterns conducive to classification amidst urban
noise, while Mel spectrograms offer a visual, intuitive grasp of sound events over time. Their
integration into sound classification models capitalizes on their respective strengths, enhancing
model performance through a sophisticated understanding of sound as perceived by human
auditory mechanisms.

4.3. Test Methodology

The experimental setup acknowledges the substantial computational resources required for
training advanced machine learning models, such as CNNs and the untrained TNN model.
To accommodate the computational demands of our experiments, an Nvidia A6000 GPU was
employed. This choice of hardware reflects the resources that were actually utilized for the
research process, enabling the training and evaluation of sophisticated models to proceed
without being hindered by immediate hardware constraints.

This methodological decision underscores the practical aspect of conducting machine
learning research, where the availability of computational resources can directly impact the
scope and depth of possible investigations. By specifying the hardware used, we aim to provide a
transparent overview of the experimental conditions, allowing for a clearer interpretation of the
results and their reproducibility in similar or differently resourced environments.
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5. RESULTS

After delving into the comparative performance of CNN and TNN models in the context of shared
augmentation techniques, it’s pivotal to acknowledge the broader scope of our study and the
limitations encountered during the experimentation phase.

5.1. Model Configuration Adjustments

Recognizing the need for efficiency and mindful of the extensive training times associated with
larger models, we implemented the following adjustments:

– Reduction in Encoder Layers: We reduced the number of encoder layers from the original
12 to a single layer, based on preliminary tests that showed no substantial difference in
performance for our specific preprocessed data.

– Adjustment in MLP Nodes: The model’s multilayer perceptron (MLP) component was
adjusted from 3072 nodes to 1536 nodes, as the larger configuration did not yield significant
improvements in performance for our data.

These adjustments to the TNN model were driven by a pragmatic approach to experimentation,
seeking to balance the model’s complexity with our resource constraints and the unique demands
of our dataset.

5.2. Results of 10-fold Cross-validation

Table 1: Results of 10-fold cross-validation using augmented data for MFCC and MEL features

MFCC MEL

Mean Acc Mean Loss Mean Epochs Mean Acc Mean Loss Mean Epochs

CNN 0.984 0.187 384.2 0.974 0.253 231.3

TNN 0.635 1.582 6.2 0.653 1.450 15.5

SD Acc SD Loss SD Epochs SD Acc SD Loss SD Epochs

CNN 0.007 0.034 225.5 0.010 0.038 78.7

TNN 0.039 0.240 3.7 0.045 0.344 7.1
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5.3. Augmentation Techniques and Model Performance

While both models benefited from the augmentation strategies implemented, it’s important to
note that the TNN model’s performance, though not reaching the same level as the CNN, did
demonstrate improvement from these techniques. This improvement, however, was constrained
by the trial-and-error approach in hyperparameter optimization, a process inherently limited by
the available computational resources and the project’s timeframe.

5.4. Considerations on the TNN Model’s Potential

The disparity observed in the TNN model’s performance compared to its documented success in
handling larger datasets (in the original AST model paper [1]), such as Audio Set [3], suggests that
our implementation has not fully tapped into its capabilities. This is attributed to the iterative
nature of finding optimal hyperparameters within the constraints of our hardware and the
preliminary understanding of the model’s architecture. It’s reasonable to infer that with extended
experimentation and access to more substantial computational resources, the TNN model’s true
potential could be realized, possibly surpassing CNN models in similar tasks.

The table above presents a stark contrast in performance between the CNN and TNN models,
highlighting the effectiveness of our tailored approach for the CNN and the potential areas for
improvement in the TNN model.

6. MOVING FORWARD

In reflecting on our findings and considering the pathways for future exploration, it’s essential
to highlight the evolving landscape of machine learning models in audio classification. Notably,
the AST model adaptation [1], grounded in the architecture of Vision Transformers (ViT) [11],
presents promising avenues for enhancement through the utilization of pre-trained models. The
potential for significant improvement by adopting models pre-trained on vast image datasets,
such as ImageNet, has been well documented in the AST paper [1]. Preliminary experiments
adapting the vit_large_patch16_224 model (gathered from the PyTorch Image Models [12])
with a slow learning rate have already shown encouraging results surpassing those reported in
this study, albeit without the comprehensive validation of a 10-fold cross-validation due to time
constraints.

6.1. Exploring Pre-trained Models and Hybrid Architectures

Employing pre-trained Vision Transformer (ViT) models as a foundation for audio classification
tasks utilizes a substantial base of learned features and representations, which can significantly
enhance the performance of Transformer Neural Network (TNN) models. This approach is
currently under investigation in our ongoing tests and indicates a viable method for repurposing
the extensive array of visual knowledge contained within these models for auditory applications.
Nevertheless, the comprehensive effectiveness and applicability of this strategy require further
validation in subsequent studies.

Additionally, investigating hybrid models that integrate the precision of convolutional
layers with the advanced attention mechanisms of Transformers presents a promising avenue
for enhancing audio classification. This interest is sparked by research such as "Conformer:
Convolution-augmented Transformer for Speech Recognition" [13], which demonstrates the
synergy of combining CNNs’ detailed feature extraction with the contextual awareness provided
by Transformers. This combination could lead to models offering exceptional accuracy and
efficiency in environmental sound classification.

The comparative data presented in the table above clearly delineates the performance
differences between CNN and TNN models. It underscores the effectiveness of our customized
approach for CNNs and identifies potential areas for improvement within the TNN framework.
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7. CONCLUSION AND FUTURE WORK

This study has advanced the exploration of Convolutional Neural Networks (CNN) and
Transformer Neural Networks (TNN) for urban sound classification. Despite the constraints
of limited computational resources and time, our research highlights the potential of the
Audio Spectrogram Transformer (AST) model to address the intricacies of sound classification
effectively. The AST model demonstrated notable adaptability and performance, even with a
restricted dataset. Nonetheless, the limited scope of our training data and the lack of an extensive
validation phase point to the preliminary nature of our results.

The outcomes achieved within these constraints reveal the potential of TNN models to
process and classify complex urban soundscapes efficiently. However, the limited validation of
our model underscores the need for further research. Future work should focus on enlarging
the dataset to improve the training robustness of these models. There is also a significant
opportunity to refine AST model configurations and explore the use of pre-trained models and
hybrid architectures. Such efforts could lead to improvements in efficiency and accuracy in urban
sound classification.
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